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The theory of the jet-flap for unsteady motion 

By D. A. S P E N C E *  
Graduate School of Aeronautical Engineering, Cornell University 

(Received 12 September 1960) 

Linearized methods developed in earlier papers (Spence 1956, 1961) are used to 
discuss the non-stationary flow of a wing with a jet-flap. We consider a thin two- 
dimensional wing at zero incidence in a steady stream of speed U ,  with a thin 
jet emerging parallel to the chord at the trailing edge, and study the motion 
following an instantaneous deflexion of the jet through an angle T,,. If the 
momentum-flux coefficient C, of the jet is < 4, the governing equations can be 
put in a form in which C, does not appear explicitly, and a similarity solution 
then gives the shape of the jet at  small times t from the start of the motion as a 
functionof (x - c ) p - * t f ,  where x = cisthe trailing edge andp = $CJ. The solutionis 
obtained from a certain third-order integro-differential equation, by constructing 
the Mellin transform of the non-dimensional shape. When t is large the jet near 
the wing approaches the shape given by the known results for steady flow, but 
its shape at distances of the order of Ut downstream changes diffusively under 
the action of the starting vortex. A similarity solution is also found for the flow 
in this region in terms of (x- Ut)pdt-*, without restriction to small p. Expres- 
sions for the lift coefficient at small and large times are found, and the case of an 
oscillating deflexion angle is treated by the same methods. 

1. Introduction 
In  a paper published some years ago (Spence 1956; this will be referred to as I) 

the author used the methods of thin aerofoil theory to discuss the flow past a 
two-dimensional wing with a jet emerging from the trailing edge at a small 
angular deflexion T relative to the chordline, into fluid moving with undisturbed 
speed U and constant density p. This represents the mathematical idealization 
of a jet blowing over a small flap. Numerical solutions were given in the paper 
for the lift derivatives with respect to the wing-incidence 01 and to the jet-deflexion 
T as functions of the jet momentum coefficient CJ; more recently (Spence 1961, 
referred to as 11) these have been replaced, using an analytic solution of the 
singular integro-differential equation for the dope of the jet, by expansions in 
powers of CJ and In CJ valid for gCJ ( = p say) less than 1-which range of momen- 
tum coefficients covers most practical applications. 

I n  the present paper attention is turned to the unsteady motion of such a wing, 
and in particular to that which would follow a time-dependent change in the 
flap-angle T. This problem can be formulated in linearized approximation using 
the model introduced in I, and the analytic methods of I1 can be used to obtain 
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closed solutions of the resulting flow problem in a number of limiting cases. We 
restrict ourselves here to motions in which the wing remains at zero incidence, 
and r is a prescribed function of the time t ;  the same methods could, however, 
be used to discuss more general types of motion-for instance, flight through a 
sharp-edged gust, or following a sudden change of incidence. For such motions 
the theory of aerofoils without jets is well developed, and a synthesis of the 
results found here with those of the classical unsteady aerofoil theory will be 
given later by J. C. Erickson. 

The problem is formulated in $ 2 in terms of a distribution of vorticity repre- 
senting the wing and jet. In  linearized approximation this is located in the plane 
of the wing, and suitable boundary conditions are applied on the normal com- 
ponent of the velocity induced by it at this plane. In  $2.4 the lift coefficient in 
unsteady flow is expressed as the time-derivative of a certain integral of the stated 
vortex distribution, to be evaluated for particular cases in later sections. The 
derivation depends on the fact that the total vorticity inside a sufficiently large 
contour enclosing the aerofoil remains zero for all time if it  is so initially, positive 
vorticity on and near the wing being balanced by an equal amount of opposite 
sign which is swept back at stream speed. This negative distribution is analogous 
to the starting vortex of classical theory, but differs in that it spreads diffusively 
over a growing region as a result of changes induced in the curvature of the jet. 
The constancy of circulation around a large contour cannot be deduced in the 
usual way from Kelvin’s theorem, since in the presence of a jet extending to 
infinity a large circuit surrounding the wing and moving with the fluid could 
deform in such a way as not to close across the jet; but nevertheless it follows 
from the governing equations, as is shown in Q 2.3. 

Two particular types of time-dependence have been examined in the remainder 
of the paper: first, that of a sudden change in deflexion, described by 

(a, non-zero value for t < 0 would be taken care of by the steady solution of 11) 
and second, steady oscillation with reduced frequency n, i.e. 

~ ( t )  = roexp (inUt/c), (2) 

where c is the chord length. The second is closely related to the operational 
solution of the first and is therefore treated rather briefly in $ 5. The remarks 
just made about the constancy of circulation in a large circuit do not of course 
apply in this case unless the motion is assumed to have been in existence only 
for a finite time. From the solution of the first case, that for an arbitrary 
transient 7 ( t )  can be written down as a convolution integral, so these two are 
sufficient for a fairly full discussion of the problem. The solution for the sudden- 
deflexion case is developed in detail in §§ 3 and 4 for small and large times, respec- 
tively. For small times, the transformation used in I1 to introduce the jet- 
strength parameter p = $C, into the co-ordinates in such a way as to magnify 
the trailing edge region results in a great simplification of the equations, which 
then possess a similarity solution in terms of z/t% when p is small. With the aid 
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of a similar transformation of the co-ordinates in the neighbourhood of the point 
x = Ut it  is also possible to discuss the flow at large times, in this case without 
restriction on the value of p, and again a ‘similarity’ solution is found for the 
downwash distribution over the jet far from the wing. 

2. Formulation of the problem 
We suppose as before that the jet is a thin two-dimensional curved sheet of 

high velocity gas in irrotational motion, with time-dependent streamline boun- 
daries as in figure 1, and are again able to write the pressure difference Ap between 
points immediately above and immediately below the jet, and lying on the same 
normal to the internal streamlines, as the product of the mean local curvature K 

and the jet momentum-flux J .  
Y 

FIUURE 1. Flow in an element of the jet (schematic). 

2.1. Pressure rise across a thin jet  

This property, first pointed out by Erickson (1959), follows from the fact that 
the normal is an equipotential of the flow within the jet, along which p + &pJ V2 
is therefore constant a t  any instant, where p ,  V and p are the pressure, velocity 
and density within the jet. Hence to the first order in small quantities 

Ap+pJ VAV = 0, 

where A represents the difference between the values of a quantity on the upper 
and lower boundaries, and 7 is the mean value of V across the jet. The condition 
of irrotationality within the jet may likewise be expressed as 

(AVIAR) + ( i f /R)  = 0, 

where R T &AR are the radii of curvature of upper and lower boundaries. Hence, 
eliminating A V ,  

and in the limit A R  -+ 0, an extension of the argument used in I again shows that 
J is constant along the jet. 

Ap = - ( p j  V2AR)lR = - KJ, (3) 

2.2. Linearized form of equations 

The pressure difference given by (3) may be set equal to that in the outside 
stream, in which the velocity potential is #(x, y ,  t )  say. Again we linearize the 
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problem by applying the boundary conditions on the line y = 0, and using the 
unsteady form of Bernoulli’s equation, are able to write 

where 

Replacing A p  in this equation by (3), and writing the curvature as -a2h0/ax2, 
where h,(x, t )  is the displacement of the jet below the real axis, we then have 

A$@, t )  = $ ( X ,  + 0, t )  - $(x ,  - 0,t ) .  

the momentum-flux coefficient C, being defined as J/ ipU2c.  If now the wing 
and jet are represented by a distribution of vorticity on the x-axis, of magnitude 
y(z, t )  = (a/&) A$, then the downward velocity w(x, t )  = - $&, 0, t )  at the 
axis is related to y as before by 

but the condition that the flow should be tangential to the jet becomes 

x > c :  (4 + u &) h,(x, t )  = w(x, t), (7) 

where x = 0 and x = c represent the leading and trailing edges of the wing. An 
equation of the same form as the last must also be satisfied at the wing, h,(x, t )  
then being a prescribed function describing the applied motion. But as stated in 
the introduction, the present paper is restricted to consideration of cases in which 
the wing is at zero incidence to the stream, and only the jet-deflexion is time- 
dependent. Accordingly, we set 

0 < x < c :  W ( X , t )  = 0 (8 )  

on the wing, and specify the initial slope of the jet by means of 

The first of these boundary conditions can be absorbed into the integral relating 
downwash to vorticity exactly as in the steady case, 11s 2.2 (this form of refer- 
ence to sections in I1 will be used throughout), SO that (6) is again replaced by 

and the problem is now specified on the interval c < x < co by the last two equa- 
tions together with (5) and (7). The latter may be combined, by cross-differentia- 
tion to eliminate h and A$, into a single auxiliary equation between w and y, 
namely 

( ; + u ; ) 2 y ( x , t )  = -+cCJu2 - W ( X , t ) ,  
Q3 
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so that (10) and (11) are now the governing equations on c < x < co, subject to 
the remaining boundary condition (9). To find the position of the jet, as is done 
for small times in 5 3, it is also necessary to specify its initial position by means of 
h(x, 0) = 0. Information about this is lostin the differentiation leading to (1 l), 
so this equation is not used in the short-time discussion; it is, however, the more 
useful form for treating the motion after times long enough for it to have 
become independent of the precise starting conditions. 

2.3. Circulation round a contourfar from the wing 

In  showing that A$(%, t )  -+ 0 as x --f 00 for all time, it will be assumed for the 
present that sufficiently far from the wing the jet returns to its undisturbed 
position along the axis, so that with increasing z the curvature finally vanishes. 

07; FIGURE 2.  Successive jet shapes at small times after initial deflexion 

(equal intervals of tg) (schematic). 

Intuitively this seems clear, for if the h a 1  position were displaced vertically an 
infinite amount of work would have been done to the fluid in finite time; more- 
over, the assumption will be confirmed from the solutions for the jet shape to 
be found in later sections. To prove the result concerning Aq5 we may solve 
equation (4) in terms of Ap in the form 

where F is arbitrary. Since this solution holds for all positive or negative x 
and t (although the integrand vanishes when either of its arguments is less than 
zero) the initial conditions show that F = 0. Then if x: - Ut > c we can replace 
Ap in the integrand by the jet curvature, by (3), obtaining 

If K ( z , t ) = m a x l r ( t , t + q ) i  for x-Ut  < c < x ,  

the absolute value of the integral is 6 ( J / p U )  UtK(x ,  t ) ,  and, for a fixed t ,  

R(x,t)+O as x + m .  

Therefore as stated lim A$@, t )  = 0, 

the limit being approached non-uniformly with respect to t-i.e. as indicated 
in figure 2,  the larger the time, the further from the wing must one go before 
IAq5(z, t)l becomes less than a chosen small quantity. 

z+m 

16 Fluid Mech. 10 
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The result can be written in a number of equivalent ways. Using (6) and (lo), 

0 = A$(co,t) = y ( 6 , t ) d t  = lim 2 ~ x w ( x , t )  = r ( l ) ' y ( E , t ) d t .  (12) 
/OW X+oO 6 - c  

It may be noted in passing that the last result in (12) is equivalent to the so-called 
'Wagner condition ' of classical unsteady aerofoil theory, when with a suddenly 
applied downwash Ua at the wing the integral instead of vanishing would equal 
- nUa for all time. In  the absence of a jet y is a function of Ut - x only, and is 
readily obtained in terms of Hankel functions on inversion of this integral condi- 
tion (von Kiirmiin & Sears 1938). 

2.4. Lift coeficient in unsteady $ow 
The lift force L on the wing is the sum of the integrated normal presures over 
the chord and the direct component J sin T of the jet momentum at exit. Writing 
T for  sin^, 

(13) L = - Apdx+JT( t )  = p- aat loc A$dx+pUA$(C,t)+JT(t) ,  1: 
using (4) for the pressure difference at the wing. The last term on the right is p 
times the integral of the right-hand side of (5) from x = c to x = co, so (13) can 
be replaced by the single integral 

C, = L / i p U 2 c  = (2/U2c)/0mdx(;  + Ug) A$ 

for the lift coefficient. I n  the transient case in which A$(co, t )  is zero, the second 
term makes no contribution, leaving 

C, = (2 /U2c) , /0  a m  A$dx = - ( 2 / U 2 c ) ~ ~ o w x y ( x , t ) d x  

on integration by parts. A$ dx may be identified as p-1 times the 'impulse' 

of the system. Since the integral equation for y ( x , t )  has been formulated on 
the interval c < x < co, it is convenient to eliminate the integration from 0 to  
c in (15). To do so, use equation (7) of 11, to write the vorticity distribution on 
the wing in terms of that on the jet as 

j0* 

and from a well-known result (see, for example, I ,  equation 66) the integral in 
square brackets is found t o  equal [ @ ( E - C ) ~ - ~ + & ] ;  combining this with 

r t y ( 6 ,  t )  o?c and making use of (12) enables one finally to write the lift coefficient 



Theory of the jet-$up for unsteady motion 243 

3. Sudden change in deflexion: small-time solution 
In  this section a solution valid for small times will be found for the first case 

mentioned in the introduction, that in which the wing is at zero incidence through- 
out, and at t = 0 the angular deflexion of the jet at the trailing edge changes 
instantaneously from 0 to 70. The motion in the region x > c is then described by 
the equations of 6 2.2, subject to the boundary conditions 

h,(c, t )  = ho(x, 0 )  = 0, (2)z=c = 

Physically one might expect the jet to deform somewhat in the manner indicated 
in figure 2, and a similarity solution showing this behaviour can in fact be found 
for its shape near the trailing edge. As a preliminary step the governing equations 
may be simplified, provided the jet-strength parameter p = $CJ is sufficiently 
small, less than $ say-this is not a severe restriction on CJ-by absorbing p 
into the co-ordinates near the trailing edge. As in 11, write 

where 

h,(x, t )  = ~ C T , ( ~ / C ) - *  h ( ~ ’ ,  t ’ ) ,  

y ( x ,  t )  = 2u‘To(x/C)-*g(x’, t ’ ) ,  

and excluding terms of order p, equations (5 ) ,  (7) and (10) become 

with boundary conditions derived from (18) 

h(x‘, 0 )  = h(0, t’) = 0, h, (O ,  t’) = 1. (22) 

If t’ < 1 an approximation to these equations may be made by omitting the 
derivatives with respect to z‘ on the left-hand side of (20) and (21), since they are 
smaller than those with respect to t’ except at points so close to the trailing edge 
that x’/t’ = O( 1). Cross-differentiation of the approximate equations gives 

A similarity solution for (23), satisfying the boundary conditions (22), is found 
by writing h(x‘,  t ’ )  = t’ff(x’/t’%) = t ’ j f ( z )  (24) 

say, when the equation becomes 

f- zf’ - 2 ~ z f ”  = - ( 9 1 2 ~ )  

The first boundary condition is automatically satisfied and the remaining two 
become 

(26) f(0) = 0, f’(0) = 1. 
16-2 
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The solution for this equation is found in 3 3.1. The existence of the solution 
justifies aposteriori the omission of the 2’-derivatives from (20) and (21)) since 

(a/az’)/(a/at’) < O(t’S) < 1 

for small t’.  The solution is not, however, uniformly valid, but applies only when 
d / t ‘  < 1 ; when the reverse inequality holds the time derivatives disappear from 
the equations, leaving the equation for steady motion that was solved in 11. 
The latter therefore correctly describes the singular behaviour of the vortex 
distribution very close to the trailing edge, with validity in a neighbourhood 
that grows linearly with time. 

Equation (23) can also be derived in another way which displays its region of 
validity more clearly. If t = t‘ and y = z‘ - t‘, say, are treated as the independent 
variables, +a/&’ is replaced by a/& and 3/82’ by a/ay, so that (20) and (31) 
become 

For small t the first of these can be approximated provided y/t B 1 by setting 
t = 0 in the kernel and at the lower limit, after which (23) is recovered on cross- 
differentiation. 

3.1. Similarity solution for  the jet-shape 

Equation (25) may be solved by the method used by Lighthill (1959)-see 
also I1 8 3.2-for the basic equation of steady motion. Write 

for some real c, where P(s) is the Mellin transform z- ’ f (z)  dz. Differentiation 
gives ” 

1 S’+”(Zs;2) (y) z-SF(s) ds, $(f- zf’ - 2z2f”) = -. 
27i-z c-{c@ 

If s(s + 1) (s + 2) P(s) is regular in the strip c - 3 < 9 s  < c, the contour in the last 
integral can be changed to 9 s  = c - 3, whence on writing s - 3 for s the integral 

Then, using the result 1 x * <-“ 
5-zdc = -tanns 

which holds for I9sI < 4 to evaluate the Cauchy integral in (25)) we obtain the 
functional equation 
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provided IcI < 8. To simplify the equation write P(s) = P(s) &(s),where 

245 

when it becomes 

&(s) = -(tanns)&(s-3) = (tanns$) (tanmi) (tanns$) &(s-3). (31) 

s + l  

Clearly one solution of (31) is 

where Go(s) is the Lighthill function defined in I1 (equation 38)) which satisfies 

Go(s) = (tanns) Go(s- l), Go(0)  = Go( -4) = 1, (33) 

and has poles of order n at s = - n and at s = n - Q, where n is a positive integer. 
The general solution must be Y ( s )  multiplied by a function of period 3, and 

to decide whether any such further factor is necessary we must see whether the 
conditions imposed on P(s) in deriving the functional equation (29) are satisfied. 
The function P(s) has a simple pole at s = - 1 with residue f and is otherwise 
regular in 9 s  < 8, the remaining poles being those of cosec +n(s - i) at s = 3n + 4 
(n = 0,1 ,2 ,  . . .). The three factors of Y(s) have simple poles at s = - 2, - 3, - 4 
and at Q, 8, Q, respectively. Therefore if we choose 0 < c < +, 

s(s + 1) (s + 2) P(s) Y(s) 

is regular as required in the strip c - 3 < 9 s  < c. 
Finally, P(s) must be integrable as 1981 -+ co on Bs = c in order for the 

integral (27) to exist. It was shown in I1 9 3.3 that Go@) N exp( -in I9s [ ) ,  so 
by (31) Y(s) N exp (-+n IYsl). 
Also P(s) N exp (&n- 1981). 

The product of these factors N exp (-in IYsl), and the inclusion of a further 
periodic factor would either introduce poles into the strip c - 3 < 9 s  < c or 
prevent the convergence of P(s) as 1981 -+ co. Therefore the solution is com- 
pleted by writing 

where A is a, constant to be determined from the second boundary condition (26).  
(The first has been satisfied by choosing P(s) regular at a = 0.) Since 

&(s) = AYb), (34) 

the first term in the expansion off ' ( z )  for small x is the residue of - sF(s) at its 
pole at s = - 1. The boundary condition is therefore satisfied if F(s)  has residue 
1 a t  this point, where P(s) has a simple pole with residue $ and Y(s) is regular. 

(35) 

Therefore 
4 

3Y( - 1) - 4  - ,[Go( - Q )  Go( -I)]-'. A =  
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3.2. Lift coeficient 

Inserting the co-ordinate transformation (19) into the expression (17)  for the 
lift coefficient, we obtain 

This may be evaluated from the solution of thelast section, since i?g/at' = - Ph/?x'3 
in the small-time approximation; thus in.terms of the similarity variable defined 
by (24) 

= k 0 , u 4 t f - 4 ~ ~ Z 4 ~ 1 1 ' ( Z )  dZ. (36) 

To evaluate this expression invert (28), obtaining 

8-1 111 z f ( ~ ) d z  = - ( ~ - 3 ) ( 8 - 2 ) ( s - l ) F ( s - 3 ) .  

The required integral is t,he value of the right-hand side when s = 3, namely 

- (R) !  .- .- (-sin -_ tn) . .  ( -sinsn) Go( -$) Go( - 8 )  
(a)  Go( - 5)  Go( - + ) ' ( - i)! ( - sin f r )  

Since Go(s) = Go( - 4 - s) ,  (by 11, equation 35) ,  Go( - &) = Go( - g )  and 

Go( -$)  = (cot +n) Go( i) = 4 3  Go( - g), 
87 (nr 4 

ao that finally C, = - o/) t'-& = 3.40057,,~~Q 
3( - g ) !  (37) 

Thus in a sudden deflexion the lift force is infinite initially. Physically this 
implies that  an infinite rate of working is required to stmt the motion impulsively. 
If  the deflexion were described more generally by some function 7( t )  the lift 
coefficient for small times could be written as a Stieltjes integral 

showing that infinite values of C, occur only if d.r/dt is singular at t = 0, a8 is 
the case with the delta-function representation of equation (1) .  

3.3. ,Jet shape 

The shape of the jet for small and large values of z is found by moving the contour 
9 s  = c in (27) over successive poles of the integrand. The residues are evaluated 
in the same way as in I1 $3.4  using the properties of the Go function listed 
there. Those at the poles 9 = - n, where n is apositive integer, give the expansion 
for z < 1,  and those at s = n - 4 that  for z > 1. The double pole at s = 4 produces 
a logarithmic leading term in the asymptotic expansions 
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c=---- y + 3  4 31 - 0.3689, n 
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y being Euler’s constant. The function f ( x )  is plotted in figure 3, the neighbour- 
hood of z = 1 having been supplied by eye, and plots of 

h(x‘, t ’ )  = t’yf(x’lt‘8) 

confirm that the shape of the jet for small times is as indicated in figure 2. In  
physical co-ordinates the leading terms ‘are 

0 2 4 6 8 10 

z 

FIGTJRE 3. Non-dimensional shape-function f(z) for small times. 

according to (38), but in fact, for x’ < t’, the steady solution of I1 in which 
h(x) = z + O ( z 2 I n z )  should apply; the term of order z‘2/t’# in (39) is valid only 
when t’ << x‘ << t’P. 

4. Sudden change in deflexion: large-time solution 
When the time from the instant of jet deflexion is long, the flow in the neigh- 

bourhood of the wing approaches that described by the steady solution of 11. 
The integral of the vorticity on the wing and in its neighbourhood therefore 
approaches the value r, = ~ U C C , ~ ~ )  say, where CJ!a) is the lift coefficient in steady 
flow with the final deflexion. But since the total circulation about the system, 
A@(CQ, t ) ,  is zero initially, it remains so for all time, a balance being brought about 
by negative vorticity which is swept downstream and causes the jet far from the 
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wing to deform as indicated in figure 4. After a sufficiently long time, this nega- 
tive vorticity acts on the wing as would a line vortex of magnitude - I?, a t  a 
distance Ut downstream, producing a downwash Fm/(27rUt) at the wing. This 
is equivalent to a reduction in incidence of amount (cl47rUt) Cp). I n  the opposite 
direction, at distances large 
seen as a doublet of strength 

compared with Ut, the combined distribution is 
- I', Ut at the origin. 

Shapes derived from 
-n 'long-time' similarity 

Final pbsition in steady flow 
FIGURE 4. Successive jet-shapes at long times from start (schematic). 

4.1. Final form of thejetfar from the wing 

To discuss the flow mathematically, we may write the distributions of vorticity 
and downwash as 

(40) i Y(Z, t )  = Yrn(z) + Y ~ ( Y ,  t>, 

w(2, t )  = w&) +WAY, t), 
where y = x- Ut, 

rm(z) and w,(x) being the distributions in steady flow with deflexion T ~ .  The 
Wagner condition A$(.., t )  = 0 is 

by (12), and subtracting the corresponding steady equations (11, equations 8 
and 5) from (10) and (1 I), the equations connecting w1 and y1 are obtained as 

and 

From these it appears that for large t, y1 and w1 approach the functions yo(y, t )  
and wo(y,t) say, which satisfy the equations obtained by allowing t to tend to 
infinity wherever it occurs explicitly in the last three equations, namely 

and 

(42) 

(43) 
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respectively, together with (41) which is unaffected. Note that two separate 
steps have been made in deriving (43): first, the kernel 

y + u t - c  q + u t  4 
(Y+UF G u t X )  

has been set equal to unity, which is equivalent to disregarding the boundary 
condition wl(y, t )  = 0,  - Ut < y < - Ut +c, obtained from (S), and is justifiable 
provided wo(y, t )  is small enough on this interval for large t ;  secondly, the lower 
limit of integration has been changed from the trailing edge y = - Ut +c to 
y = - 00, which is justifiable provided yo(q, t )  dies out sufficiently rapidly for 
large negative 7. The solution found below is shown in 6 4.3 to meet both these 
requirements. 

rcc 
WO(Y, t )  = FC t ' - f f ( z ) ,  

4.2. ~ i m i ~ u r ~ t y  solutions for the downwush distribution 

The last three equations can be solved for yo and wo in terms of a similarity 
parameter proportional to y/ t f .  As in the small time solution the jet strength 
parameter p = $C, can be adsorbed into the co-ordinate system, but by contrast 
with that case there is no need here to restrict p t o  small values, since the trans- 
formed equations are exactly independent of p. 

Write 

and set 

and (47) 

To solve these equations by the Mellin transform technique used earlier, we first 
change to the semi-infinite interval 0 < z < 00 by defining for z > 0 
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Then, for z =- 0, fl is related to  g,, and f, to g, by (45), and the two remaining 
equations become 

(49) 

and 

The solution of (50) is carried out in the Appendix, and it is also shown 

that the only solution of (51) such thatIoag,(5)d< exists as required by (49) is 
the trivial solution 

f2(z) = g2(2) = 0. 

0 3 r  

2 

FIGURE 5. Distributions of downwash (fi) and vorticity (qJ from long-time solution. 

f (z>  = - f ( - 4  = f ( 
g ( 4  = g( -4 = g,(z), L),) 

Therefore, for z > 0, 

and the solutions forf,(z), g,(z) found in the Appendix are 

(53) 

The two latter are the leading terms of asymptotic expansions in which the full 
series are divergent for all z > 1. These functions are plotted in figure 5. 
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4.3. Limiting forms of the downwash distribution 

It is easy to confirm from (55) that the downwash at distances x % Ut from the 
wing has, as expected, the distribution produced by a doublet -r, Ut at the 
origin, since for large positive values of y = x -  Ut, from (44) and (55) 

whereas w, N rw/2rrx, so that altogether 

x %  Ut:  W(X,t) -3 = -__ r, ut + O ( Z ) .  
2n (l x 2 - u t  ) 2nx2 

The leading term is that produced by the stated doublet. The equation also shows 
that the jet shape sufficiently far from the wing will be undisturbed at any given 
time, thereby justifying the argument used in 0 2.3 to show that 

lim A&x, t )  = 0. 

Close to the wing, on the other hand, y = x -  Ut - - Ut, in which case we find 
in the same way 

X+ a, 

The last two results could of course have been written down at once on the 
physical grounds mentioned at the beginning of $4, but the mathematical 
discussion is unavoidable if one is to seek higher approximations in l / t  to the 
flow near the wing. The fact that the downwash due to yo dies out at the wing 
like l / t  justifies the first step in forming equation (43), and the justification for 
the second step follows from the fact that the contribution from the tail of the 
yo distribution, namely 

behaves like 

for large t (using the asymptotic expansion for g(z)), and consequently is an order 
of magnitude smaller than the leading term. 

4.4. Lift coegicient at large times 

To discuss the flow near the wing at times t 9 c/ U say, we may expand the time- 
dependent part yI(y, t )  of the full vorticity distribution, equation (40), in the form 

C 
Ydx -  m t )  = Y(IL’,t)-yY,(x) = Yo(y , t ) -~yZ(x )+o(&)  (59) 

say, for x << Ut. The corresponding downwash is 

( it) 
C 

w1 = w(x, t )  - w,(x) = wo(y, t )  + r tw2(x)  + 0 - 
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say, where 

Then since both wo, yo and w,, ym satisfy (1 1) separately, on equating terms of 
order l / t  in that equation we find 

yZ(x) = -&cJwb(x). (61) 

The condition that the downwash w1 vanishes over the wing (where w,(x) is 
also zero) is, to order l/t ,  

Ut Tm 27Tc ) o < x < c :  wo+-w2=- c -+w, = o .  
Ut 

The last three equations show that wz(x) is precisely the distribution of down- 
wash in steady flow past a wing at incidence 01 = -r,/ZncV with a tangential 
(i.e. undeflected) jet a t  the trailing edge, and from the results for that problem 
(see I or 11, or Thwaites 1960, pp. 500 et seq.) we can deduce in particular that 

aCim)/i3cz being the lift derivative with respect to incidence for the value of CJ 
in question. From equation (13) it is seen that to order l / t  the lift coefficient 
differs from Cp) only by reason of the contribution of y2(x)  to which is 
c/ Ut times (63); thus since 

a = - r,p~cu = - cp14~, 

For small values of CJ, aCP)/a01 3 277, SO in the limit we recover the result 

CL/C(Lm) = 1 - c / ( 2 U t ) +  ... 
of the classical unsteady aerofoil theory for a sudden change of incidence. 

From ( 5 8 )  it  appears that the next term in the expansion will be of order 
t-Qlnt; to calculate this however it would be necessary to derive an expression 
for yo-y1 far from the wing and this has not been attempted. It is possible to 
show that CL/Cim) = 1 + O(c/ut )  simply by inserting the limiting distribution 
yo(y,t) in the integral (17), since the contribution from ym(x)  disappears on 
differentiation with respect to t ,  but the precise coefficient of l / t  cannot be 
found by this means. 

5. Oscillating flap-angle 
In  this section the solution of the problem presented by a steady harmonic 

variation of the initial angle T will be outlined. For simplicity it will be assumed 
that p = $CJ is small enough to permit the co-ordinate-stretching transformation 
which renders the equations independent of ,u to first order. We set 

~ ( t )  = ~ ~ e i n U i / c  (2) 
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(65) I and seek a solution h,(x, t )  = pcr, einUitc (x/c)” h(x’), 

y(z, t )  = ~ U T ,  einUilc (z/c)-&g(x’),  

2 - C  where as before x’= -. 

Then excluding terms of order p and omitting the primes, ( 5 ) ,  (7) and (10) become 

PC 

and ivg + g’ = - h”’, (67) 

h(O) = 0, h’(O) = 1. (68) 

where v = pn,  and the boundary conditions are 

Iterative solutions to these equations can be found in the cases v < 1, v % 1, 
which we now treat in turn. 

5.1. Low-frequency oscillation 

If v < 1, which is the case for small p if the physical reduced frequency n is of 
order 1, the first approximation is found by setting v = 0, when the basic steady 

- 0, h’(0) = 1 
equation 

Lh‘(x) E5 h’(2) - 

studied in I1 is obtained. The solution will be denoted here by h,(z) so that in 
the notation of I1 

G,(s) being the Lighthill function defined by equation ( 3 3 )  of the present paper. 
Since h,(O) = 0, 

= J;fo(fl) d5. ( 70) 

Putting this back in (66) and (67), we can write 

h(2) = h,(x) + ivh,(x) + . . . , 
where h,(z) satisfies h,(O) = h;(O) = 0, and 

(71)  

By the methods of I1 $3.5 the solution is found to be 

The first term in (71) represents a slow oscillation of the basic steady solution, 
and the second a small correction 90’ out of phase; this will be modified in turn 
by higher terms. The solution is not valid for large x, since h,(z) N Z(z/n-)i and 
the term vh which is excluded in forming the first approximation dominates 
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over that retained if we go far enough from the wing. Moreover i t  is physically 
unrealistic to imagine the jet oscillating with an amplitude that tends to infinity 
far downstream. In  fact since the motion must have started at some large nega- 
tive time - T ,  at distances of the order of UT from the wing the jet will be 
described by the long-time transient solution of 5 4. 

5.2. High- frequenc y oscilhtion 

I n  the other extreme case, v % 1, a first approximation h,(z) say is obtained by 
omitting h'(x) and g'(x) from (66) and (67), respectively, leaving the equation 

with boundary conditions given by (68). In  the same way as the low-frequency 
oscillation is closely related to the long-time solution, this case is related to the 
small-time solution: in fact (74) differs from the equation satisfied by the Fourier 
transform of the jet-shape for small times only in the absence of a term g,(& 0) 
from the numerator in the integrand, arising from the initial value of the vor- 
ticity distribution. The solution of (74) can be carried out by the method used 
in 0 3, and we find 

where Y(s) is the product defined by (32) and A the constant 4/3Y?( - 1) given by 
(35). h,(x) is therefore v-8 times a function of v b .  

I n  this case the expansion can be continued by writing 

h(x) = h,(z) + i v A h , ( ~ )  + . . ., 
g(z) = go(x) + iv-&g,(z) + . . . , 

where h, and g1 are given by 

-vPh,+hh = -- 

- v*gl +g; = -iv-ih;(€J. 

These equations may be combined to eliminate g ,  in the form 

= 2V4h&). 

(The last step follows on differentiation of (74), since 

JoWg-4hp(5) d t  = (i)! Y( -5) = 0.) 

(77) 

The solution of (77) can be found by the same methods; again we find a third- 
order difference equation for the Mellin transform 
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The equation is not homogeneous like (29), but has a term from the right-hand 
side of (77) involving Ho(s - l), and after some analysis which will be omitted 
here, the solution obtained is 

H,(s) = !(cosecy) 3 [ ( s + l ) ( c o s 7 r ~ )  -+(s innG2)]  Ho(s). (78) 

5.3. Lift coeficient with an oscillating j e t  

Equation (17) which gives the lift coefficient in terms of the vorticity distri- 
bution on the jet depends on the fact that A$ tends to zero far from the wing. 
This holds in a steady oscillation too, if it is assumed that the motion started 
at some large but fmite negative time -T, in which case the flow remains 
undisturbed at distances from the wing that are large compared with UT. In 
the low-frequency case however the equation cannot be applied directly, since 
when the expression for the transformed vorticity g(z') obtained from the 
analysis of $5.1 is inserted in (17) the integral in that equation is divergent. 
This is because of the invalidity of the solution for large x' that was mentioned 
earlier. To get round the difficulty we now obtain an expression for CL in which 
the lowest order terms in ,u can be found as finite integrals of g(z'). Equation 
(13) can be rearranged to give 

Using the identity (16) to replace the integrals from 0 to c by integrals from c 
to co, we obtain 

Inserting the expression (65) for ~ ( 5 ,  t), this becomes simply 

If n is of order unity, v is of order ,u and the low frequency solution of 0 5.1 applies. 
g(c)  is equal to fi(5) and the integral in (80) is therefore known from I1 to be d, 
whence CL = 4~~(7rp)a exp (in Ut/c - €1, 
where the phase angle E = tan-l(&), showing that the lift coefficient oscillates 
with a phase leg increasing with frequency about the value 470(7rp)4 which 
corresponds to a steady deflexion 70. The effect of the higher-frequency terms 
will be to change both phase and amplitude by amounts of order Y. 

In  the high-frequency case, on the other hand, the difficulties with the integral 
in (17) do not arise. Substituting from (65), the expression for the lift coeffi- 
cient is found to be 

(81) 

c, = - 4p+ r0 &UUc 
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The first approximation to ivq(t) is --h:([), on insertion of which the integral 
may be evaluated as QHo( - #), yielding the expression 

C, = 4r0(7rp/3)+ v* einutic. (82) 

This shows the amplitude to be frequency-dependent in a way that fits neatly 
with the t-) dependence found in the related short-time discussion of $3.2, a,nd 
also that the phase-lag has decreased to zero. 

6. Discussion 
The analysis shows that a first approximation for small times to the flow with 

a suddenly deflected jet can be found in the ‘similarity ’ form used in $ 3. The same 
solution can also be found by writing equation (23) operationally in terms of the 
Laplace transform with respect to time. The author has not found a way of 
improving this solution by a higher term, as was done for the high-frequency 
oscillating case in $5.2,  on account of its invalidity near x’ = 0. The conclusion 
that the lift-coefficient varies for small times as t-) would not be altered by a more 
exact analysis, since there is always a region to which the similarity solution 
applies. The lift coefficient comes entirely from the apparent mass terms in the 
limit, and it appears that the force required to deflect the jet impulsively must 

be infinite. The ‘impulse’ of the fluid Ldt  is however finite (and zero initially). 

It may be noted that the long-time solution for the motion far from the wing 
is independent of the precise way in which the flow was started, depending 
only on the total circulation in the final steady flow near the wing and therefore 
on the final deflexion of the jet. This solution would also apply if the wing were 
at incidence. The similarity solution for yo(y, t )  found in $ 4 actually describes 
the way a jet extending from y = - co to y = + co would deform if at time t = 0 
it lay wholly along the axis and a vortex of magnitude - F, was concentrated 
at the origin. 
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Appendix. Integral equations for the downwash far from the wing 

wash distribution) and g1 (the symmetric part of the vorticity distribution) are 
The equations derived in 8 4 connecting f ,  (the anti-symmetric part of the down- 

and $(5g, + 9xg; + 2x29;) = -y;, (A 2 )  

with the condition (A 3) 

To solve we construct the Mellin transforms 

F'(s) = /owxs-tfi(x) dx, G,(s) = /om9-1gl(x) dz, 

from which on inversionf, and g, will be found as 

where c is some real constant such that x"-'fi(x), xC-lg,(x) E L(O,Q). Since, 

we obtain from (A l), multiplying both sides by 9 - 1  and integrating from 0 to Q, 

Fl(s) = (tan Qm) G,(s), (A 7)  

provided - 1 < c < 1. Differentiating (A 5), the left-hand side of (A 2 )  becomes 

and the right-hand side 

If s(s + 1) (s + 2 )  Pl(s) is regular in c - 3 < B?s < c, the contour of integration can 
be moved to W s  = c - 3 in this integral. Then writings - 3 for s it may be rewritten 

Equating the integrands of (A 8) and (A 9), and using (A 7), we get 

the functional equation is simplified to 

17 

(sin ins)  4(s) + (cos Qns) #(a - 3) = 0. (A 12) 
Fluid Mech. 10 
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One solution is $(s) = A cos ~ T S ,  (-413) 

where A is constant, and the possibility that this would be multiplied by some 
further function of period 3 is excluded by the same type of argument as used in 
Q 3, since already #(s) N exp ( - +7r I 9 s [ )  for large [Ys[, so this is the only solu- 
tion. A is fixed from (A 3), since 

The limit is fn, so A = - 2/37r. Therefore 

and s(6 + 1) (s + 2) Fl(s) is regular as required in c - 3 c 9 s  < c if we choose 
0 < c < 1. The inversion formulae (A 5) can now be used to obtain series expan- 
sions for fl(x) and gl(z). 

For 0 < z < 1 the integrals are evaluated by moving the contour to the left 
over successive poles, namely those of (s - l)!  (sin +rs) = 2n/( -s)! (cos 4ns) and 
of (s - l)! (cos ins )  = 2n/( - s)! (sin i n s )  at odd and even negative integers, whence 

and 

These series are absolutely convergent for 0 < x < 1. 

poles of { -(%+ 1)/3]!, i.e. s = 1 , i ,  4, ..., to the right of 9 s  = c: 
Asymptotic expansions are obtained as minus the sums of residues at the 

with the leading terms quoted in Q 4. 
In exactly the same way as above, the equations connecting the symmetric 

part f2 of the downwash distribution and the antisymmetric part g ,  of the 
vorticity, namely 

together with (A 2) with changed suffix, can be solved to give 

But since {-2(2s+ l)}! has a pole at s = 1, the other two factors being unity 

there, the requirement that G,( 1) = g2( f )  dg should exist can only be satisfied 

with the trivial choice B = 0, i.e. 
/om 

f&) = g2(2)  = 0. (A 20) 


